Characterization of Aluminum-Based-Surface Matrix Composites with Iron and Iron Oxide Fabricated by Friction Stir Processing
نویسندگان
چکیده
Surface composite layers were successfully fabricated on an A 1050-H24 aluminum plate by dispersed iron (Fe) and magnetite (Fe₃O₄) particles through friction stir processing (FSP). Fe and Fe₃O₄ powders were packed into a groove of 3 mm in width and 1.5 mm in depth, cut on the aluminum plate, and covered with an aluminum sheet that was 2-mm thick. A friction stir processing (FSP) tool of square probe shape, rotated at a rate of 1000-2000 rpm, was plunged into the plate through the cover sheet and the groove, and moved along the groove at a travelling speed of 1.66 mm/s. Double and triple passes were applied. As a result, it is found that the Fe particles were homogenously distributed in the whole nugget zone at a rotation speed of 1000 rpm after triple FSP passes. Limited interfacial reactions occurred between the Fe particles and the aluminum matrix. On the other hand, the lower rotation speed (1000 rpm) was not enough to form a sound nugget when the dispersed particles were changed to the larger Fe₃O₄. The Fe₃O₄ particles were dispersed homogenously in a sound nugget zone when the rotation speed was increased to 1500 rpm. No reaction products could be detected between the Fe₃O₄ particles and the aluminum matrix. The saturation magnetization (Ms) of the Fe-dispersed nugget zone was higher than that of the Fe₃O₄-dispersed nugget zone. Moreover, there were good agreement between the obtained saturation magnetization values relative to that of pure Fe and Fe₃O₄ materials and the volume content of the dispersed particles in the nugget zone.
منابع مشابه
Production of Dispersed Ceramic Nano-Particles in Al Alloy Using Friction Stir Processing
In this research, surface composite layers containing nano sized TiB2, Al2O3-TiB2, ZrO2 and CNT particles have been fabricated on Aluminum alloy substrates by friction stir processing. The effects of different processing variables such as number of passes and strengthening particle distribution, hardness, and wear properties of surface nano...
متن کاملProduction of Dispersed Ceramic Nano-Particles in Al Alloy Using Friction Stir Processing
In this research, surface composite layers containing nano sized TiB2, Al2O3-TiB2, ZrO2 and CNT particles have been fabricated on Aluminum alloy substrates by friction stir processing. The effects of different processing variables such as number of passes and strengthening particle distribution, hardness, and wear properties of surface nano...
متن کاملFabrication of Al/Graphite/Al2O3 Surface Hybrid Nano Composite by Friction Stir Processing and Investigating The Wear and Microstructural Properties of The Composite
Friction stir processing was applied for fabricating an aluminum alloy based hybrid nano composite reinforced with nano sized Al2O3 and micro sized graphite particles. A mixture of Al2O3 and graphite particles was packed into a groove with 1 mm width and 4.5 mm depth, which had been cut in 5083 aluminum plate of 10 mm thick. Packed groove was subjected to friction stir processing in order to im...
متن کاملInvestigating the effect of tool dimension and rotational speed on microstructure of Al-B4C surface composite layer produced by friction stir processing (FSP)
Friction stir processing (FSP) was used for the fabrication of Al-B4C surface composite. Al-Mg-Si alloy was considered as the substrate and B4C particles were incorporated into the substrate by thermo-mechanical effect of FSP. The effect of tool dimensions and different rotational speeds on the microstructure and microhardness of the composite layers was evaluated and the optimum process parame...
متن کاملFabrication and Characterization of Novel Mixed Matrix Polyethersulfone Nanofiltration Membrane Modified by Iron-Nickel Oxide Nanoparticles
In this study, a mixed matrix polyethersulfone/iron-nickel oxide nanoparticle nanofiltration membrane was prepared by the solution casting technique. Polyvinylpyrrolidone was also used as a membrane pore former in membrane fabrication. The effect of iron-nickel oxide nanoparticles concentration in the casting solution on the membrane structure and performance was investigated. Scanning...
متن کامل